Olodaterol (Striverdi® Respimat®): A New Once-Daily Long-Acting β-Agonist for the Treatment of COPD

Charlyn Diaz, PharmD Candidate

Chronic obstructive pulmonary disease (COPD) is characterized by irreversible and usually progressive airflow limitation exacerbated and caused most often by exposure to lung irritants, with cigarettes and other smoked tobacco products being the leading source. This disease is the third leading cause of death among American adults and contributed to at least 3 million deaths worldwide in 2012. In 2010, COPD cost the U.S. roughly $49.9 billion, $29.5 billion of which come from direct health care expenditures.

At present, no curative treatments have been developed for COPD; thus, current approaches to COPD include prevention and treatment, the latter of which is focused on symptomatic control and reducing the risk of hospitalization. According to the most recent GOLD guidelines published in 2015, short-acting bronchodilators are recommended for essentially all patients, for use as an as-needed rescue inhaler. A long-acting β-agonist (LABA) or long-acting muscarinic antagonist (LAMA) is considered the next step for the maintenance of mild-to-moderate COPD that is uncontrolled with a short-acting inhaler alone.

Commonly used LABAs, salmeterol and formoterol, are indicated for twice-daily use only. However, previous research has demonstrated that COPD treatment with drugs administered once-daily are associated with significantly greater adherence and reduced use of resources and costs compared to other dosing frequencies. Thus, manufactures have recently focused their attention towards developing once-daily COPD inhalers and combination products. Two once-daily LABAs, indacaterol and vilanterol, have received FDA-approved indications for treatment of COPD in recent years, but only indacaterol is available as a single drug product, whereas vilanterol is only available in combination with either an inhaled corticosteroid (fluticasone) or a LAMA (umeclidinium).

Olodaterol (Striverdi® Respimat®; Boehringer Ingelheim Pharmaceuticals; Ridgefield, CT) is a new once-daily LABA that was granted an FDA-approved indication, in July 2014, for the treatment of COPD, including chronic bronchitis and emphysema. The purpose of this article is to review the pharmacological profile of olodaterol including its efficacy, safety, dosing, and administration.

Mechanism of Action

Olodaterol acts as an agonist at the β₂-adrenergic receptors located along the smooth muscle of the lung. β-receptors are coupled to a stimulatory G-protein of the enzyme adenyl cyclase which produces the second messenger cyclic adenosine monophosphate (cAMP). Elevated cAMP is believed to decrease intracellular calcium and increase membrane potassium conductance to produce smooth muscle relaxation and bronchodilation.

In vitro studies demonstrate that olodaterol has a higher β₂ selectivity than formoterol and salmeterol with a 241-fold greater selectivity for β₂ receptors than β₁. Greater β₂ selectivity is associated with fewer β₁ mediated tachycardia and cardiac effects, although the clinical relevance of this β₂ selectivity in affecting cardiac tissue is minimized for drugs which are not significantly absorbed into systemic circulation (e.g., most inhaled medications). The pharmacokinetic properties of olodaterol are summarized in Table 1.

Drug Interactions

Concomitant use of olodaterol with other β-adrenergic drugs may potentiate the effects of olodaterol. Administration of olodaterol with other β₂-adrenergic agents is not recommended.

TABLE 1 | Pharmacokinetics of olodaterol.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption</td>
<td></td>
</tr>
<tr>
<td>C<sub>max</sub></td>
<td>10-20 minutes following inhalation</td>
</tr>
<tr>
<td>C<sub>ss</sub></td>
<td>8 days</td>
</tr>
<tr>
<td>Bioavailability</td>
<td>30% (inhaled); <1% (orally)</td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>Protein Binding</td>
<td>60% (concentration independent)</td>
</tr>
<tr>
<td>V<sub>d</sub></td>
<td>1110 L; high tissue distribution</td>
</tr>
<tr>
<td>Metabolism</td>
<td></td>
</tr>
<tr>
<td>Glucuronidation</td>
<td>UGT2B7, UGT1A1, UGT1A7, UGT1A9</td>
</tr>
<tr>
<td>O-demethylation</td>
<td>CYP2C9, 2C8 (negligible 3A4)</td>
</tr>
<tr>
<td>Elimination</td>
<td></td>
</tr>
<tr>
<td>Excretion</td>
<td>5%-7% excreted unchanged in the urine after inhalation</td>
</tr>
<tr>
<td>Half-life</td>
<td>45 hours</td>
</tr>
</tbody>
</table>

C_{max} = maximum concentration; C_{ss} = steady state concentration; V_d = volume of distribution.
The olodaterol clinical development program was composed of three phase II dose-ranging trials and eight confirmatory trials in patients with COPD. Four additional dose-ranging trials were conducted in patients with asthma, but olodaterol is not currently indicated for asthma and a review of these studies is outside the scope of this manuscript and will not be discussed further.

Clinical Studies

Phase II Trials

All three phase II dose-ranging trials for COPD demonstrated that olodaterol, at any of the studied doses, significantly improved forced expiratory volume in 1 second (FEV₁) from baseline (Table 2). Based upon the results of the dose-ranging trials, 5-mcg and 10-mcg doses were further evaluated in the phase III COPD trials.

Phase III trials

The olodaterol phase III studies were designed to include patients with concomitant medications, very severe COPD (10% of patients in trials, on average), and comorbidities (about 80% of patients) as would typically occur in clinical practice. Only 5-mcg and 10-mcg doses of olodaterol were assessed in these phase III trials. The ten randomized, double-blind confirmatory trials in the olodaterol clinical development program are summarized in Table 3.

All ten trials only enrolled patients who were 40 years of age or older with a clinical diagnosis of COPD according to a FEV₁/FVC ratio of <70%. Other inclusion criteria were a FEV₁ <80% of predicted normal (GOLD categories II – IV) and a smoking history of ≥10 pack-years. Patients were excluded if they had a history of asthma, history of myocardial infarction within 1 year of the screening visit, and unstable or life-threatening cardiac arrhythmia within the past year. With the exception of other LABAs, all pulmonary medications were allowed as concomitant therapy; for the 48 week trials patient enrollment was stratified by tiotropium use.

Forty-Eight-Week Trials

The 48-week trials were conducted to establish the long-term efficacy and safety of olodaterol. Results from the two pairs of 48-week trials concluded that olodaterol 5 mcg once-daily and olodaterol 10 mcg once-daily provided statistically significant improvements in the primary endpoints of FEV₁ AUC₁₋₂₄ response and

Table 2 | Summary of phase II olodaterol dose-ranging trials in COPD.¹¹

<table>
<thead>
<tr>
<th>Trial #</th>
<th>Design/Duration</th>
<th>Treatments</th>
<th>Primary Endpoint(s) (Secondary)</th>
<th>Results</th>
<th>Authors Conclusions</th>
</tr>
</thead>
</table>
| 1222.3² | DB, PC, CO | olodaterol 2 mcg x 1 dose
olodaterol 5 mcg x 1 dose
olodaterol 10 mcg x 1 dose
olodaterol 20 mcg x 1 dose
placebo x 1 dose | Trough FEV₁ | FEV₁ with 1 dose of olodaterol > placebo | Promising QD LABA for COPD |
| 1222.5¹³ | DB, PC, PG | olodaterol 2 mcg QD
olodaterol 5 mcg QD
olodaterol 10 mcg QD
olodaterol 20 mcg QD
placebo QD | Trough FEV₁ | All doses ↑ FEV₁; order of efficacy: 2<5<10=20 mcg | QD olodaterol has a 24-hour duration of action that is maintained over 4 weeks in patients with COPD; dose-response curve level above 10 mcg/day |
| 1222.26¹⁴ | DB, CO | olodaterol 5 mcg QD
olodaterol 10 mcg QD
olodaterol 2 mcg BID
olodaterol 5 mcg BID | FEV₁ AUC₀₋₁₂
FEV₁ AUC₁₂⁻二十四 (FEV₁ AUC₂₄⁻二十四) | Significant ↑ FEV₁ AUC₁₂⁻二十四 with BID dosing verses QD dosing | QD ≈ BID dosing based on non-significant difference in FEV₁ AUC₀⁻二十四 and FEV₁ AUC₀⁻₁₂
BID verses QD treatment difference was small and not significant for FEV₁ AUC₀⁻₁₂ and FEV₁ AUC₀⁻二十四
5 mcg QD ≈10 mcg QD efficacy |

AUC = area under the curve; QD = once daily; BID = twice daily; CO = cross-over; COPD = chronic obstructive pulmonary disease; DB = double blind; FEV₁ = forced expiratory volume in 1 second; PC = placebo controlled; PG = parallel group.
Table 3: Summary of phase III trials of olodaterol in COPD.11

<table>
<thead>
<tr>
<th>Trials</th>
<th>Pivotal Studies: Long-Term Efficacy and Safety</th>
<th>24-Hour Bronchodilating Profile17,18</th>
<th>Exercise Endurance19</th>
</tr>
</thead>
<tbody>
<tr>
<td>1222.11 (n=624)</td>
<td>1222.13 (n=904)</td>
<td>1222.39 (n=108)</td>
<td>1222.37 (n=151)</td>
</tr>
<tr>
<td>1222.12 (n=642)</td>
<td>1222.14 (n=934)</td>
<td>1222.24 (n=99)</td>
<td>1222.38 (n=157)</td>
</tr>
</tbody>
</table>

Design: Parallel-Group/ 48-week | Cross-Over/ 6-week

<table>
<thead>
<tr>
<th>Comparator (s)</th>
<th>Treatment</th>
<th>Placebo</th>
<th>Olodaterol 5 mcg or 10 mcg once-daily</th>
<th>Olodaterol 5 mcg or 10 mcg once-daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>Olodaterol 5 mcg or 10 mcg once-daily</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olodaterol 12 mcg BID</td>
<td>Placebo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary Endpoints (Secondary)

- **After 12 weeks:**
 - FEV\textsubscript{1} AUC\textsubscript{0-3}:
 - Olodaterol 5 mcg: 0.076 L (p<0.0001)
 - Olodaterol 10 mcg: 0.083 L (p<0.0001)
 - Formoterol: 0.053 L (p=0.0011)

- **After 24 weeks:**
 - FEV\textsubscript{1} AUC\textsubscript{0-12}:
 - Olodaterol 5 mcg: 0.172 L (p<0.0001)
 - Olodaterol 10 mcg: 0.174 L (p<0.0001)
 - Formoterol: 0.158 L (p=0.0001)

Comparison to Placebo:

- Olodaterol 5 mcg: 0.176 L (p<0.0001)
- Olodaterol 10 mcg: 0.173 L (p<0.0001)
- Formoterol: 0.172 L (p=0.0001)
- Olodaterol 5 mcg: 0.176 L (p=0.0001)
- Olodaterol 10 mcg: 0.173 L (p=0.0001)
- Formoterol: 0.172 L (p=0.0001)

Results:

- **Combined Mean Trough FEV\textsubscript{1} difference from placebo:**
 - Olodaterol 5 mcg: 0.059 L (p=0.0003)
 - Olodaterol 10 mcg: 0.083 L (p<0.0001)
 - Formoterol: 0.053 L (p=0.0011)
- **Combined Mean Trough FEV\textsubscript{1} difference from placebo:**
 - Olodaterol 5 mcg: 0.134 L (p=0.0001)
 - Olodaterol 10 mcg: 0.171 L (p<0.0001)
 - Formoterol: 0.172 L (p<0.0001)

Treatment difference between olodaterol 5 mcg and formoterol:

- FEV\textsubscript{1} AUC\textsubscript{0-3}: p<0.0104
- Trough FEV\textsubscript{1}: p=0.2230

Conclusions:

- Olodaterol 5 mcg and 10 mcg ↑ FEV\textsubscript{1} AUC\textsubscript{0-3} & trough FEV\textsubscript{1} compared to placebo
- Olodaterol 5 & 10 mcg and formoterol ↑ FEV\textsubscript{1} compared to placebo
- No differences in FEV\textsubscript{1} were observed between olodaterol 5 mcg QD and formoterol 12 mcg BID after 24 weeks
- Significant ↑ in FEV\textsubscript{1} AUC\textsubscript{0-12} with formoterol BID dosing vs. olodaterol QD dosing but no difference in FEV\textsubscript{1} AUC\textsubscript{0-12} or AUC\textsubscript{0-24}.
- Olodaterol 5 & 10 mcg, formoterol ↑ FEV\textsubscript{1} compared to placebo
- No significant FEV\textsubscript{1} difference between tiotropium QD and olodaterol QD
- Olodaterol, 5 & 10 mcg and tiotropium ↑ FEV\textsubscript{1} compared to placebo
- Both studies showed significant ↑ in mean EC and mean IC for olodaterol 5 mcg and 10 mcg compared with placebo.

AUC = area under the curve; QD = once daily; BID = twice daily; COPD = chronic obstructive pulmonary disease; FEV\textsubscript{1} = forced expiratory volume in 1 second; TDI = transition dyspnea index; ET = exercise endurance time; IC = inspiratory capacity; SGRQ = St. George’s Respiratory Questionnaire.

http://pharmacy.ufl.edu/pharmanote/ 3 Vol. 30, Issue 11 August 2015
trough FEV₁ response after 12 weeks (studies 1222.11/1222.12) and after 24 weeks in (studies 1222.13/1222.14) compared with placebo (Table 3).^{15,16}

Trough FEV₁ is a measure of the extent of bronchodilation at the end of the 24-hour dosing interval. FEV₁ AUC₀₋₂₄ characterizes the peak bronchodilating efficacy of olodaterol from time 0 to 3 hours within the 24-hour dosing interval. In studies 1222.13/1222.14, improvements in FEV₁ AUC₀₋₂₄ and trough FEV₁ were additionally found to be comparable to a well-established active comparator, formoterol 12 mcg twice daily (Table 3).¹⁶ Trough FVC difference from placebo was 0.066 L for olodaterol 5 mcg and 0.063 L for olodaterol 10 mcg (p<0.0001 for both), thus both doses of olodaterol produced significant improvements in FVC.¹¹ The FVC response mirrored the FEV₁ results and was significantly improved compared with placebo.

The secondary endpoint of each 48-week trial included rescue medication use. Statistically significant reductions in weekly mean daytime and night-time rescue medication use were observed in patients taking formoterol 12 mcg twice-daily (trials 1222.13 and 1222.14), olodaterol 5 mcg once-daily (reduced by 0.46 actuations/day and 0.50 actuations/night), and olodaterol 10 mcg once-daily (reduced by 0.57 actuations/day and 0.78 actuations/night) relative to placebo.¹⁵ Another secondary endpoint for trials 1222.13 and 1222.14 was the St. George’s Respiratory Questionnaire (SGRQ), a validated measure of symptomatic benefit. Using combined data from studies 1222.13 and 1222.14, the total SGRQ score difference, compared to placebo, was -2.8 for olodaterol 5 mcg once daily (p=0.0034 for comparison to placebo), -3.4 for olodaterol 10 mcg once daily (p=0.0004), and -1.2 for formoterol 12 mcg twice daily (p=0.20).^{11,16} However, these differences in the olodaterol groups did not meet the minimum clinically important difference of 4 units. The authors attributed these results to the patient population being maintained on concomitant COPD therapies in all phase 3 studies.

The Mahler transition dyspnea index (TDI) focal score was included in studies 1222.13 and 1222.14 as a third measure of symptomatic benefit.¹⁶ After 24 weeks, no significant difference was observed between placebo and olodaterol-treated patients. Interestingly an unexpected improvement occurred in the placebo group of study 1222.13 that was almost double that seen in study 1222.14.¹¹ Due to the unexplained placebo response, it cannot be concluded that dyspnea improved with olodaterol 5 mcg and 10 mcg, solely based on the TDI focal scores gathered after 24 weeks.

Six-Week Trials

A total of six 6-week double-blind, double-dummy, randomized, crossover studies were performed: 4 studies assessed 24-hour bronchodilation profiles comparing olodaterol to placebo and formoterol (studies 1222.24 and 1222.25) or tiotropium (studies 1222.39 and 1222.40); the remaining 2 studies (1222.37 and 1222.38) assessed exercise endurance, comparing olodaterol with placebo. These studies are summarized in Table 3.

The first four 6-week trials assessed the 24-h bronchodilator efficacy of olodaterol as a once-daily maintenance inhaler for COPD patients. Studies 1222.24 and 1222.25 allowed tiotropium as a concomitant medication. FEV₁ was measured 72 hours after the last dose of tiotropium and a wash out period of at least 48 hours was required.¹⁷ Studies 1222.39 and 1222.40 did not allow use of a LAMA, since tiotropium was used as an active comparator in these studies.¹⁸ FEV₁ AUC₀₋₁₂ and FEV₁ AUC₁₂₋₂₄ were the primary endpoints of all 4 studies.¹⁸ Patients treated with formoterol 12 mcg twice-daily and both doses of daily olodaterol demonstrated significant increases in mean FEV₁ AUC₀₋₁₂ and mean FEV₁ AUC₁₂₋₂₄ after 6 weeks compared with placebo (studies 1222.24 and 1222.25).¹⁷ Compared to formoterol twice-daily, olodaterol once-daily did not significantly increase mean FEV₁ AUC₁₂₋₂₄ or FEV₁ AUC₀₋₂₄.¹¹ These results are consistent with the FEV₁ AUC₁₂₋₂₄ effects seen during Phase II studies when twice-daily and once-daily formulations were compared. In studies 1222.39 and 1222.40, tiotropium 18 mcg daily and both doses of daily olodaterol demonstrated significant increases in mean FEV₁ AUC₀₋₁₂ and mean FEV₁ AUC₁₂₋₂₄ after 6 weeks compared with placebo.¹¹ No significant difference was seen between olodaterol and tiotropium on FEV₁.

In the remaining two exercise endurance trials, after 6 weeks of treatment, mean endurance time increased significantly for both olodaterol doses versus placebo.¹¹ In study 1222.37, endurance time increased by 14% for olodaterol 5 mcg once-daily and 13.8% for olodaterol 10 mcg once-daily (p<0.001 for both olodaterol groups) compared to placebo.¹³ In study 1222.38 endurance time increased by 11.8% for olodaterol 5 mcg once-daily and 10.5% for olodaterol 10 mcg once-daily compared to placebo.¹¹ Increases versus placebo in mean inspiratory capacity for patients treated with olodaterol 5 mcg and 10 mcg also were significant: 0.182 L and 0.174 L, respectively (both p<0.0001 comparing olodaterol groups to placebo; study 1222.37) and 0.084 L and 0.166 L, respectively (both p≤0.02 comparing olodaterol groups to placebo; study 1222.38).¹⁹

Adverse Events

Adverse events observed in the dose-ranging trials and four 6-week cross-over trials were consistent with those observed in the 48-week parallel group trials.⁹ Table 4 summarizes adverse drug reactions that occurred in olodaterol 5 mcg treated patients ≥2% placebo. Nasopharyngitis was the most common adverse event seen in clinical trials with olodaterol use. Other frequently reported adverse reactions were upper respiratory tract infections, bronchitis, back pain, cough, urinary tract infection, diarrhea, dizziness, skin rashes, and arthralgia.⁹ Pneumonia, constipation, and fever were reported in patients exposed to 10mcg doses of olodaterol (i.e., a higher dose than is currently recommended).¹⁵ The most common serious adverse event with olodaterol use was further exacerbation of COPD which occurred in study 1222.12 at a rate of 25.5%, with placebo, 22.0% with olodaterol 5 mcg, and 27.2% with olodaterol 10 mcg; however, COPD exacerbation rarely led to a life-threatening bronchospasm in phase III studies.¹⁵ Patients should be educated to seek help if signs or symptoms of angioedema (<1% incidence in olodaterol-treated patients) or a cardiac event are present such as chest tightness, swelling of the face, lips, tongue, or throat.²⁰ Also of concern, malignant neoplasm of the lung was reported in 0.3% of patients who received olodaterol 5 mcg compared with 0.2% using placebo.⁹ In any such case of a serious complication, olodaterol should be discontinued and another medication should be initiated in its place for maintenance treatment of COPD.

Dosing and Administration

Olodaterol hydrochloride is packaged in an aluminum cylinder cartridge together with a separate Striderid® Respimat® inhaler. Each actuation from the inhaler delivers 2.7 mcg of olodaterol hydrochloride, which is equivalent to 2.5 mcg olodaterol per
Olodaterol is indicated for oral inhalation only. The recommended dose of olodaterol is two actuations (5 mcg) once-daily, at the same time each day; 5 mcg per day is considered the maximum dose per 24-hours. Olodaterol is available in 30-day (60 puffs) or 14-day (28 puffs) packaging. In contrast to the indacaterol Neohaler® or tiotropium HandiHaler®, the Respimat® doesn’t need a capsule loaded for each dose. Patients should be counseled on how to use and actuate the inhaler. Prior to first use, patients must load the cartridge into the inhaler and prime it. To prime the inhaler for the first time (or after more than 21 days without use), patients should be instructed to actuate the inhaler toward the ground until an aerosol cloud is visible. This process must be repeated three more times until the inhaler is ready for use. If the inhaler is not used for more than three days, patients are to actuate the inhaler once before use. Patients should be instructed to discard the inhaler three months after the cartridge is loaded.

Monitoring
Increased use of short-acting β2-agonist inhalers may be a marker of a deteriorating condition and signal a need to add an additional agent to olodaterol. FEV1, FVC, and/or other pulmonary function tests can help determine COPD progression. Serum potassium, serum glucose, blood pressure, CNS stimulation, and heart rate may be monitored for evidence of olodaterol toxicity.

Precautions
Olodaterol should be cautiously given to patients that are unusually responsive to sympathomimetic amines, those with convulsive disorders, or those with hyperthyroidism. Long-acting β-agonists should also be administered with caution in patients with cardiovascular disorders, including known or suspected prolongation of the QT interval, coronary insufficiency, cardiac arrhythmias, hypertrophic obstructive cardiomyopathy, or hypertension. If increases in pulse or blood pressure occur, olodaterol may need to be discontinued. Although changes in blood glucose were infrequent during clinical studies with long-term administration, caution should be exercised in patients with diabetes since β2-agonists may increase serum glucose. Olodaterol has not been studied in patients with uncontrolled diabetes.

Olodaterol could have fatal cardiovascular repercussions if given in excessive doses or together with another LABA. Also, olodaterol is not intended to be used as a rescue inhaler, nor is it indicated for acutely deteriorating COPD. Olodaterol should be stopped at once if an immediate hypersensitivity reaction, including angioedema, occurs after administration.

Special Populations
A pharmacokinetic meta-analysis showed that no dose adjustment is necessary for olodaterol based on sex, weight, and age (including geriatric patients). Olodaterol has not been studied in patients with mild or moderate renal impairment. In subjects with severe renal impairment, olodaterol concentration is increased by approximately 40%, but no dose adjustment is recommended at this time for renally-impaired patients. Furthermore, no dose adjustment is required for patients with mild or moderate hepatic impairment. Olodaterol has not been studied in patients with severe hepatic impairment.

Olodaterol should not be used in children due to lack of safety and efficacy studies. Olodaterol is pregnancy category C due to lacking human studies and teratogenicity seen in New Zealand

Table 4

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Olodaterol 5 mcg once-daily (n=876)</th>
<th>Placebo (n=885)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>99 (11.3%)</td>
<td>68 (7.7%)</td>
</tr>
<tr>
<td>Upper Respiratory Tract Infection</td>
<td>72 (8.2%)</td>
<td>66 (7.5%)</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>41 (4.7%)</td>
<td>32 (3.6%)</td>
</tr>
<tr>
<td>Urinary Tract Infection</td>
<td>22 (2.5%)</td>
<td>9 (1.0%)</td>
</tr>
<tr>
<td>Respiratory and thoracic disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cough</td>
<td>37 (4.2%)</td>
<td>35 (4.0%)</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>20 (2.3%)</td>
<td>19 (2.1%)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rash (plus group of similar terms)</td>
<td>19 (2.2%)</td>
<td>10 (1.1%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>25 (2.9%)</td>
<td>22 (2.5%)</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back Pain</td>
<td>31 (3.5%)</td>
<td>24 (2.7%)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>18 (2.1%)</td>
<td>7 (0.8%)</td>
</tr>
</tbody>
</table>
rabbits; thus olodaterol should only be used if the potential benefit justifies the potential risk to the fetus. Although no human studies have been done, the approved labeling recommends prescribing an alternative well-studied COPD agent in nursing mothers since excretion of olodaterol’s metabolites into breast-milk is probable as evidenced during animal studies.

Cost

Cost data for olodaterol and select other once-daily COPD inhalers are summarized in Table 5. Boehringer Ingelheim offers two cost saving options for olodaterol. The first alternative is a manufacturer savings card that allows most eligible patients to get their first prescription of olodaterol at no cost, depending on their insurance provider. The Boehringer Ingelheim Cares Foundation is another option for low income patients. Patients can call 1-800-556-8317 to see if they qualify for monthly olodaterol free of charge.

Summary

Olodaterol (Striverdi® Respimat®) is a newly-approved alternative for the once-daily treatment of COPD. Clinical trials have shown that olodaterol is non-inferior to formoterol and superior to placebo for the treatment of COPD. The recommended dose of olodaterol is 5 mcg (two inhalations) once-daily. Dose adjustments are not necessary; however, olodaterol should not be used in children, or patients with uncontrolled diabetes, or severe hepatic impairment due to lack of safety and efficacy studies.

Olodaterol carries a black-box warning contraindicating its use for the treatment of asthma. Furthermore, olodaterol is not intended to be used as a rescue inhaler, nor is it indicated for acutely deteriorating COPD. Olodaterol should be used cautiously in pregnant women and nursing mothers, and in patients with diabetes, cardiovascular comorbidities, convulsive disorders, or hyperthyroidism. The most commonly reported adverse drug events seen in clinical trials with olodaterol use were COPD exacerbations, pharyngitis, respiratory tract infections, bronchitis, back pain, cough, UTI, diarrhea, dizziness, skin rashes, and arthralgia. Additional research is needed to better define the precise role for olodaterol among the currently-available LABAs for the treatment of COPD.

References

Results From Two 6-Week Studies. Chest 2013;144
4_MeetingAbstracts:748A. [Abstract]

EDITOR’S CORNER

Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation

A recent study published in the New England Journal of Medicine investigated whether bridging with low molecular weight heparin (LMWH) is necessary during interruption of warfarin therapy for an elective procedure.1

The study included adult patients with chronic atrial fibrillation or flutter with at least one CHADS2 risk score and were on therapy with warfarin for at least three months. The patients included in the study were undergoing an elective procedure that required temporary interruption of warfarin therapy. Patients with a mechanical heart valve, recent thromboembolism, or recent major bleed were excluded from the study. One-thousand eight-hundred and eighty-four patients were randomized to receive bridging with dalteparin sodium (100 IU/kg administered subcutaneously twice daily) or no bridging therapy with matching placebo starting three days prior to the procedure. Dalteparin or placebo was continued until 24 hours before the procedure and then for 5 to 10 days after the procedure. Primary efficacy endpoint and safety outcome were arterial thromboembolism and major bleeding, respectively, at 30 days.

At study end, the incidence of arterial thromboembolism was similar between the two groups (0.4% in the placebo group vs. 0.3% in the dalteparin group; p=0.01 for noninferiority). Significantly less major bleeding occurred in the no-bridging group compared to patients receiving bridging therapy (1.3% in the placebo group vs. 3.2% in the dalteparin group; p=0.005 for superiority). None of the major bleeding occurrences were fatal.

The results of the study are consistent from previous observational comparisons of the two strategies; however, several considerations should be kept in mind with regards to this study.2,3 First, several important patient groups were underrepresented in the study. About 3% of the patients included in the study had CHADS2 score of 5 or 6. Patients with mechanical heart valves or who were undergoing procedures associated with high risk for arterial thromboembolism were excluded. Generalization of the results is difficult to these patient populations. Second, the overall rate of thromboembolism was lower than expected and may potentially indicate that the occurrence of these events during short-term warfarin interruption is uncommon.

The most recent AHA/ACC guidelines for the management of atrial fibrillation were updated prior to the publication of this study. The guidelines favor bridging therapy in patients with a mechanical heart valve and highlight the importance of balancing between the benefits and risks in patients without a mechanical heart valve.1 The current study indicates that bridging therapy may not be necessary during interruption of warfarin therapy to prevent thromboembolism in select low to medium risk patients with atrial fibrillation.

References

PHARMA NOTE

Published by the UF Family Practice Residency Program and the Departments of Community Health & Family Medicine and Pharmacotherapy & Translational Research

University of Florida

Editor-in-Chief
John G. Gums, PharmD, FCCP

Managing Editor
Steven M. Smith, PharmD, MPH, BCPS

Associate Editor
R. Whit Curry, MD

Assistant Editor
Andrew Hwang, PharmD

The material contained in this newsletter has been prepared for informational purposes only. The articles are the work product of the individual authors to whom each article is attributed. The articles contained herein should not be used without proper permission or citation. Should you have questions about any of the content in this newsletter please contact the Editor.